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Abstract
An external electric field deforms flaccid phospholipid vesicles into spheroidal
bodies, with the rotational axis aligned with its direction. Deformation is
frequency dependent: in the low-frequency range (∼1 kHz), the deformation
is typically prolate, while increasing the frequency to the 10 kHz range
changes the deformation to oblate. We attempt to explain this behaviour
with a theoretical model, based on the minimization of the total free energy
of the vesicle. The energy terms taken into account include the membrane
bending energy and the energy of the electric field. The latter is calculated
from the electric field via the Maxwell stress tensor, where the membrane is
modelled as anisotropic lossy dielectric. Vesicle deformation in response to
varying frequency is calculated numerically. Using a series expansion, we also
derive a simplified expression for the deformation, which retains the frequency
dependence of the exact expression and may provide a better substitute for the
series expansion used by Winterhalter and Helfrich, which was found to be valid
only in the limit of low frequencies. The model with anisotropic membrane
permittivity imposes two constraints on the values of material constants: the
tangential component of the dielectric permittivity tensor of the phospholipid
membrane must exceed its radial component by approximately a factor of 3;
and the membrane conductivity has to be relatively high, approximately one
tenth of the conductivity of the external aqueous medium.

1. Introduction

Rapid development in biotechnology has induced a growing interest in the influence of an
AC electric field on biological cells, phospholipid vesicles and colloidal particles [1], which
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Figure 1. (a) A giant phospholipid vesicle is deformed into a prolate shape (left) at an applied AC
field of 1 kHz, and into an oblate shape at 10 kHz (right). The conductivity of the aqueous medium
was 1.3 μS cm−1. An electric field of ≈2×104 V m−1 was applied in the horizontal direction. The
bar represents 10 μm. (b) Deformation of the same vesicle, expressed as the value of the semiaxis
c (aligned with the direction of the electric field) as a function of the circular frequency ω of the
external AC electric field. The dashed line corresponds to the value at which the vesicle is spherical;
greater values of c correspond to prolate shapes, smaller to oblate. The dotted line is discussed
further in the text. The three consecutive runs yield 2394 ± 75, 2427 ± 75 and 2371 ± 87 μm3

as estimates for the vesicle volume, respectively, which indicates that the vesicle volume did not
change significantly during the experiment. Details of the experimental setup are given in [20].

has instigated theoretical investigations in this area [2, 3]. Among the systems studied,
phospholipid vesicles are often chosen as the model system of choice due to their well-defined
structure.

In the late 1950s, Schwan [4] began a series of studies of the influence of an electric field
on biological cells, modelling them as simple geometric shells with given electric properties. In
the early 1970s, Helfrich included the then newly developed elastic theory for lipid bilayers [5]
into the treatment of the effect of the external electric field on phospholipid vesicle shape [6].
The first experiments with phospholipid vesicles in an electric field which followed several
years later [7] seemed to confirm the claim from the previous theoretical analysis [6]: a
2 kHz external AC electric field deforms flaccid phospholipid vesicles into prolate spheroids.
Winterhalter and Helfrich [8] extended the earlier theoretical treatment [6]; their model allows
for a finite electrical resistance of the bilayer, an AC electric field, and includes Maxwell
stresses inside the membrane. The authors treated the spherical vesicle as a lossy dielectric
immersed into a medium which was also treated as a lossy dielectric. They examined the case
σm/σw � εm/εw, where σm , σw, εm and εw are the conductivities and permittivities of the
membrane and the aqueous medium, respectively. Employing series expansions, they obtained
a simple expression for vesicle deformation and predicted a conducting regime of vesicle
behaviour at low frequencies (ω � σm/εm), where the field does not penetrate the vesicle
interior, a dielectric regime at higher frequencies (ω � σw/εw), where the field penetrates
the vesicle interior, and an intermediate regime in between the two. In all three regimes, they
obtained a prolate vesicle shape.

In contrast to that, experiments with varying frequency [9, 10] have demonstrated that a
vesicle undergoes a prolate-to-oblate shape change when the frequency of the applied field is
increased from the 1 kHz range into the 10 kHz range (figure 1(a)). Figure 1(b) shows the
vesicle deformation for the shown vesicle as a function of the frequency of the applied electric
field, with c being the semiaxis parallel to the field.

In this paper, we take the work of Winterhalter and Helfrich as our starting point and
proceed to extend it by allowing for an anisotropy of the permittivity of the phospholipid
bilayer. Since the model of Winterhalter and Helfrich departs from the experimental data in
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the high-frequency region by failing to predict oblate shapes, we sought a modification that
would affect its behaviour in the high-frequency range, where the behaviour of the system is
governed solely by the permittivities.

Recently, several papers have been published which take into account the anisotropy of the
membrane dielectric permittivity and the membrane electric conductivity, which arise due to
adsorbed hydrophobic ions on the membrane [11, 12]. Ambjörnsson and Mukhopadhyay [13]
have provided a solution for the electric potential for a general ellipsoid coated with a
dielectrically anisotropic coating; the same group also examined a possible mechanism for
the dielectric anisotropy in the membrane at frequencies where molecular resonances are
important [14]. Simeonova and Gimsa [15] have extended the description of the phospholipid
vesicle membrane to a three-layer shell to take into account the fact that the dielectric anisotropy
occurs only in the phospholipid headgroup layer, while the middle layer of hydrocarbon chains
is mainly isotropic. It also needs to be noted that transitions between prolate and oblate
shapes in response to a frequency variation of the applied electric field have been examined
theoretically for cases where the electrical properties of the aqueous solution inside the vesicle
differ from those in the vesicle exterior [16, 17], and recently, an experimental morphological
phase diagram has also been obtained [18]. A review of the studies of the influence of the
electric field on phospholipid vesicles was recently summarized in a paper by Dimova and
co-workers [19].

While the above papers provide an analytical expression for the electric potential [13] or
a thorough numerical analysis of the Clausius–Mossotti factor [11, 12, 15], they do not focus
on an analysis of parameters at which either prolate or oblate deformation is possible in the
high- and low-frequency limit, which is the aim of this paper.

The paper is organized as follows. In section 2 we first develop an extension of the model
of Winterhalter and Helfrich by taking into account the anisotropy of membrane permittivity.
In section 3 we show that the model presented here exhibits a frequency-dependent prolate-to-
oblate shape transition of a phospholipid vesicle similar to the one observed in the experiment.
In the expansion valid for large vesicles, we derive the necessary conditions for a prolate or
oblate deformation in both the high- and low-frequency limit, and analyse the dependence of
the prolate-to-oblate shape transition frequency on material constants. Finally, in section 4, we
discuss some of the issues which arise from the results.

2. Theoretical framework

The equilibrium vesicle shape in an external electric field is calculated as the shape with the
minimal total free energy, consisting of the vesicle bending energy and the energy due to the
electric field. The calculation was conducted for a vesicle with constant volume, while the
necessary area increase for the deformation stems from the flattening of thermal fluctuations of
the vesicle by the electric field [21, 22]. The analytical expression for the membrane bending
energy is well known [5], and the change of the energy due to the electric field is calculated
as the work done by the force of the electric field while deforming the vesicle [8]. In order to
evaluate it, we first have to calculate the electric field. The present treatment is limited to small
deviations of vesicle shape from the sphere; thus the electric field in the presence of a spherical
shell is computed. Both the aqueous solution inside and outside the vesicle and the vesicle
membrane are treated as lossy dielectrics. The aqueous solutions inside and outside the vesicle
have identical electrical properties. The dielectric permittivity of the membrane is treated as
anisotropic, with the component aligned with the normal to the membrane differing from the
components perpendicular to this direction. Both the dielectric permittivity and the electric
conductivity of the aqueous solution as well as the electric conductivity of the membrane are
treated as scalars.
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The applied electric field E introduces a single distinct axis into the system, so the
treatment can be limited to axially symmetric shapes. This eliminates the dependence on the
longitude angle φ, if the polar (z) axis is chosen parallel to the applied field. Thus, the vesicle
surface can be parameterized as

r(θ) = s0 + s(θ), (1)

where |s(θ)| � s0, s0 denoting the deformation independent of the polar angle θ . In an absence
of deformation (|s(θ)| = 0), s0 equals the radius of the undeformed sphere r0. The deformation
is independent of the sign of the electric field, thus it is proportional to E2 in the lowest order.
As the field itself is proportional to cos θ , one can expect a deformation coupled with a field
to be proportional to cos2 θ . In terms of expansion into spherical harmonics, this limits us
to a sum of even terms. Retaining only the terms proportional to E2 or lower, a quadrupolar
term remains, where s(θ) equals the second Legendre polynomial: s(θ) = 1

2 s2(3 cos2 θ − 1),
with s2 being a measure for the extent of deformation. Positive values of s2 indicate prolate
deformation, and negative values oblate deformation.

If the membrane area is to be locally conserved, a quadrupolar displacement δrr in a radial
direction must be accompanied by a tangential displacement δrθ [8]:

δrr = 1
2 (3 cos2 θ − 1) s2 (2a)

δrθ = − cos θ sin θs2. (2b)

A requirement for a local area conservation assures that the membrane stretching is independent
of polar angle θ . The total membrane area expansion is determined by the relationship between
s0 and r0. Taking into account the requirement for a constant vesicle volume, the following
relationship for s0 is obtained:

s0 = r0 − s2
2

5r0
. (3)

The correction for a constant volume (3) contains a higher term in the powers of s2 and thus
does not affect in the lowest term either the bending energy or the energy due to the electric
field, yielding s0 = r0 an adequate approximation.

For small deformations, quadrupolar deformation only induces small perturbative changes
in the vesicle bending energy and the energy due to the electric field.

Gbend(s2) ≈ Gbend(s2 = 0) + 1

2

∂2Gbend

∂s2
2

∣
∣
∣
∣
s2=0

s2
2 (4)

Gfield(s2) ≈ Gfield(s2 = 0) + ∂Gfield

∂s2

∣
∣
∣
∣
s2=0

s2. (5)

The total energy of the vesicle formally depends on two parameters, r0 and s2. The constraint
requiring a constant vesicle volume, however, eliminates one degree of freedom, yielding (4)
and (5). It is also worth noting that the fact that neither prolate (s2 > 0) nor oblate shapes
(s2 < 0) have a bending energy lower than those of a sphere means that the expansion for the
bending energy (4) contains no linear term.

Equilibrium vesicle deformation, expressed in terms of s2, can then be calculated by
minimizing the total free energy over s2:

d

ds2
(Gbend + Gfield) = ∂2Gbend

∂s2
2

∣
∣
∣
∣
s2=0

s2 + ∂Gfield

∂s2

∣
∣
∣
∣
s2=0

= 0. (6)

Equation (6) gives the extent of deformation (s2) at given conditions.
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Figure 2. A vesicle is modelled in spherical coordinates (r, θ) as a spherical shell with external
radius rout = r0 + d/2 and internal radius rin = r0 − d/2 (d � rin being the membrane thickness)
exposed to an external electric field E. The conductivity and permittivity of the aqueous solution
inside and outside the membrane are denoted by σw and εw, and the membrane conductivity is
denoted by σm . Membrane permittivity is in general anisotropic, hence ε‖, ε⊥; their orientation is
defined in the text (equation (11)). The three media, vesicle exterior, vesicle membrane and vesicle
interior, are denoted by (1), (2), and (3), respectively.

It is now our task to write an expression for the vesicle bending energy (4), which can be
written as [5]:

Gbend = 1
2 kc

∮

(c1 + c2)
2 dA. (7)

Here, kc is the bending elastic modulus of the membrane, while c1 and c2 are the principal
curvatures of the membrane. The spontaneous curvature c0 has been omitted, because it
vanishes for a bilayer composed of two equal layers. The integration is conducted over the
total membrane area A of a quadrupolarly deformed vesicle. Up to quadratic-order terms in s2,
the total bending energy of a nearly spherical vesicle can be written as [5]

Gbend = 8πkc + 48π

5
kc

(
s2

r0

)2

. (8)

This can be readily interpreted as the bending energy of a sphere plus an addition due to the
quadrupolar deformation.

The free energy term arising from the electric field (5) is calculated as the work done by the
forces of the electric field during the deformation of the vesicle. In order to evaluate it, we first
have to calculate the electric field around a vesicle (figure 2). Gauss’ law, ∇ · D = 0, together
with the requirement for an irrotational electric field ∇ × E = 0, which stems from Faraday’s
law for electromagnetic induction, yields the Laplace equation for the electric potential U in
a medium with homogenous dielectric permittivity [23]—in our case the aqueous medium in
the vesicle interior and the external aqueous medium (respectively denoted by (3) and (1) in
figure 2). In the anisotropic case, however, Gauss’ law does not lead to the Laplace equation
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for the electric potential U , ∇ ·D = ∇ · ε E = −∇ · (ε∇U). Here, D is the displacement field,
E is the electric field and ε is the permittivity tensor.

The boundary conditions on both the outer and the inner membrane–water boundary
impose ∇ × E = 0, thus requiring the continuity of the tangential component of the electric
field, and that the total surface charge density, including both free charge and displacement
charge, must vanish. In the spherical geometry, this yields the equations

E (1)
θ = E (2)

θ , (9)

(εw − iωσw)E (1)
r = (ε‖ − iωσm)E (2)

r , (10)

for the (1)–(2) interface (r = rout, figure 2) and similarly for the (2)–(3) interface (r = rin).
Apart from (9) and (10), the system is constrained by two additional conditions: one requiring
that the electric field far from the vesicle is unperturbed, and the other requiring that the electric
field is finite inside the vesicle.

In (9), (10) we introduced the notation for the dielectric permittivities and electric
conductivities in the three media: ε(1) = ε(3) = εw, σ (1) = σ (3) = σw, and σ (2) = σm . The
membrane permittivity is treated as anisotropic. Due to its structure, electric properties in the
direction along the long axis of phospholipid molecules (or normal to the vesicle membrane)
are expected to be markedly different from the properties in the direction perpendicular to it.
The phospholipid molecule is not axially symmetric per se, but due to the unordered liquid-
like structure of the bilayer we can approximate it as such on the timescale of interest to our
problem. The two directions perpendicular to the normal on the membrane can thus be treated
as being equal. The component along the normal to the membrane is denoted by ε‖ and the
permittivity in the direction perpendicular to it by ε⊥. Local permittivity in a given point on
the membrane is thus equal to ε‖ in the normal direction and ε⊥ in the tangential direction. The
permittivity tensor is locally defined as

ε =
[

ε‖ 0 0
0 ε⊥ 0
0 0 ε⊥

]

. (11)

For a spherical shell, local coordinates conveniently coincide with the spherical
coordinates. Gauss’ law ∇ · (ε∇U) = 0 for the treated geometry is most conveniently written
in spherical coordinates,

ε‖
1

r 2

∂

∂r

(

r 2 ∂U

∂r

)

+ ε⊥
1

r 2 sin θ

∂

∂θ

(

sin θ
∂U

∂θ

)

= 0. (12)

In spherical coordinates, the equation can be separated into the radial and the angular parts,
U(r, θ) = R(r)
(θ) (it has been already taken into account that the problem is axially
symmetrical and thus independent of φ), yielding two separate equations for the radial part
and the angular part. For the angular part, a Legendre differential equation is obtained. The
equation obtained for the radial part differs from the spherical Bessel equation by involving a
factor ε⊥/ε‖ in the second term:

1

r 2

d

dr

(

r 2 dR

dr

)

− ε⊥
ε‖

l(l + 1)

r 2
R = 0. (13)

It is worth noting that (13) represents a special case of Heun’s equation, which arises from
solving the case of a general ellipsoid [13]. Equation (13) is solved by a linear combination

Rl(r) = C1r
1
2 (−1−

√
1+4lε⊥/ε‖+4l2ε⊥/ε‖) + C2r

1
2 (−1+

√
1+4lε⊥/ε‖+4l2ε⊥/ε‖).

The symmetry requirements of our problem limit us to the case l = 1. Thus, the ansatz for the
electric potential that satisfies Gauss’ law for the anisotropic case is

U (2) = 1
2 [(a(2)r (α−1)/2 + b(2)r (−α−1)/2) cos θ e−iωt + C.C.]. (14)
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A shorthand notation α = √

1 + 8ε⊥/ε‖ has been introduced along the way. The isotropic case
corresponds to α = 3, which simplifies (14) to a known form:

U (k) = 1

2

[(

a(k)r + b(k)

r 2

)

cos θ e−iωt + C.C.

]

, k = 1, 3. (15)

The coefficients a(k), b(k); k = 1, 2, 3, can in general be complex to allow for a phase shift, and
are determined from the boundary conditions.

The boundary conditions for the unperturbed field far away from the vesicle and the finite
field inside the vesicle immediately yield two coefficients:

a(1) = −E0 (16)

b(3) = 0. (17)

The remaining four coefficients are determined by the four equations specifying the boundary
conditions (9), (10):

a(2) = −6E0r (3−α)/2
out (2 + β + αβ)

8 + (2 + 6α)β + (α2 − 1)β2 − [

8 + (2 − 6α)β + (α2 − 1)β2
]

γ α
(18a)

a(3) = −12E0αβγ (α−3)/2

8 + (2 + 6α)β + (α2 − 1)β2 − [

8 + (2 − 6α)β + (α2 − 1)β2
]

γ α
(18b)

b(1) = E0r 3[(α − 1)β − 2](2 + β + αβ)(1 − γ α)

8 + (2 + 6α)β + (α2 − 1)β2 − [

8 + (2 − 6α)β + (α2 − 1)β2
]

γ α
(18c)

b(2) = −6E0r (3+α)/2
out [(α − 1)β − 2]γ α

8 + (2 + 6α)β + (α2 − 1)β2 − [

8 + (2 − 6α)β + (α2 − 1)β2
]

γ α
. (18d)

Consistently with [8], two more shorthand notations have been introduced:

β = σm − iωε‖
σw − iωεw

, (19)

γ = rin

rout
. (20)

The surface density of the force exerted on the boundary of dielectrics by an electric field is
equal to the scalar product of the Maxwell stress tensor and the normal vector to the membrane,

fout = (T (1) − T (2))er , (21a)

fin = (T (2) − T (3))er . (21b)

The force vanishes in a homogeneous medium, but can in general be non-zero on the boundaries
of media with different electrical properties. The Maxwell stress tensor is defined as

T = D ⊗ E − 1
2 (D · E)I , (22)

where I denotes the identity matrix.
Unlike in the case of the bending energy term in the total free energy (8), for which

an analytical expression was obtained, an approach where energy difference is computed is
employed here. δGfield denotes a small change in the energy due to the electric field, when
a sphere (s2 = 0) is perturbed by a small deformation change δs2. This energy difference is
calculated as the work done by the forces of electric field during the displacement of membrane
elements δr (equations (2a), (2b)), integrated over the entire membrane area [8]:

δGfield = −
∮

(fout · δr) dAout −
∮

(fin · δr) dAin. (23)
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The integration is conducted over a sphere, which is consistent with the limit of small
deformations (s2 � r0).

Substituting the coefficients (18a)–(18d) into (23) yields a lengthy expression for δGfield,
which will not be reproduced here. After substituting the expression (19) for β into it, one
obtains an expression of the form (A + Bω2 + Cω4)/(D + Eω2 + Fω4), which can be written
as a sum of two dispersion terms:

dGfield

ds2
→ δGfield

s2
= −6π

5
E2

0εwr 2
out

(

ξ∞ + ξ1

1 + ω2τ 2
1

+ ξ2

1 + ω2τ 2
2

)

, (24)

where the coefficients ξ∞, ξ1, ξ2, τ1 and τ2 are rather lengthy expressions involving five different
material constants: ε‖, ε⊥, εw, σm , σw, the membrane thickness d and the vesicle radius r0. It
turns out, however, that the actual number of independent parameters is lower. By introducing
a dimensionless frequency ω/(σw/εw), one can reduce the frequency dependence of (24) to
only four parameters. Here, we have chosen them to be γ , ε‖/εw, �ε/εw and σm/σw.

Equilibrium vesicle deformation can finally be calculated by minimizing the total free
energy (6) over s2, yielding

s2 = 1

16

r 4
0 εw E2

0

kc

(

ξ∞ + ξ1

1 + ω2τ 2
1

+ ξ2

1 + ω2τ 2
2

)

, (25)

where r 2
0 r 2

out has been replaced by r 4
0 , consistent with the expansion in E2 and retaining the

terms with the lowest energy. As we can see, the dependence of vesicle deformation s2 on
the circular frequency ω = 2πν contains two dispersion terms of the Maxwell–Wagner type,
which arise due to the interfacial polarization and not due to intrinsic dispersion. It is also
worth emphasizing that the only approximation used in deriving the expression (25) is that of a
small deformation (s2 � r0).

The coefficients ξ∞, ξ1, ξ2, τ1 and τ2 figuring in (25) can be simplified using expansion in
(1 −γ ), as (1 −γ ) � 10−3 (the vesicle radius is in the range 1–100 μm, while the thickness of
the phospholipid membrane is approximately 4 nm). Expansion up to the first order in (1 − γ )

yields

ξ∞ = −2[−2ε‖(εw − ε‖)2 + (εw + 2ε‖)εw�ε + 2ε‖(�ε)2]
9ε2

‖εw
(1 − γ ), (26)

ξ1 = −4ε‖σmσw(εw − ε‖) + 2σw(ε‖σw + εwσm + 2ε‖σm)�ε

9ε2
‖σ 2

m

(
σm

σw
− ε‖

εw

)

(1 − γ ), (27)

ξ2 = 8(ε‖ + �ε)

9ε‖

(
σm

σw
− ε‖

εw

)

(1 − γ ), (28)

τ1 = ε‖
σm

, (29)

τ2 = εw

σw
. (30)

We have introduced dielectric anisotropy �ε = ε⊥ − ε‖. The characteristic times τ1 and τ2

correspond to the trans-membrane and the trans-vesicle-interior relaxations, respectively. It is
worth noting that neither τ1 nor τ2 is affected by the anisotropy in this first-order approximation.

3. Results

This section consists of four points. First, we plot the dependence of deformation on frequency
and comment on the effects of different material constants. Next, we look for the conditions

8
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Figure 3. The theoretical dependence of vesicle deformation, expressed as either s2/r0 (left
axis) or c/a (right axis), on the circular frequency ω of the applied external electric field. The
curves a, b and c correspond to the membrane conductivities of 0.5 × 10−5, 1.0 × 10−5, and
2.0 × 10−5 �−1 m−1, respectively. Other parameters used in the calculation were r0 = 10 μm,
γ = 0.9996, kc = 1.2 × 10−19 J, E0 = 100 V cm−1, σw = 10−4 �−1 m−1, εw = 80ε0, ε‖ = 2ε0,
�ε = 6ε0.

where an oblate deformation (s2 < 0) exists in the high-frequency limit. A similar search is
performed for the conditions where a prolate deformation (s2 > 0) exists in the low-frequency
limit. Finally, we plot and analyse the dependence of the prolate-to-oblate transition frequency
on material constants.

3.1. Dependence of deformation on frequency

Figure 3 shows the vesicle deformation as a function of the circular frequency ω of the applied
external electric field. Even though the expression for deformation (25) contains two dispersion
terms, only one of them is prominent on the diagram. This is because at values of the parameters
used for evaluation (ε‖ � εw, σm � σw), the magnitude of the second dispersion term is about
two orders of magnitude smaller, ξ2 � ξ1. This agrees with the expressions (27), (28) where
expansion in (1 − γ ) is used: ξ2 ∝ σm/σw, while ξ1 ∝ (εw/ε‖)(σw/σm).

Figure 1(b) provides a comparison of the results of the model with experimental data.
The parameters used to calculate the dotted line in figure 1(b) were kc = 0.9 × 10−19 J,
E0 = 200 V cm−1, σw = 10−4 �−1 m−1, σm = 0.38 × 10−5 �−1 m−1, εw = 80ε0,
ε‖ = 2ε0, �ε = 5.2ε0. While the results of the model reproduce a general trend, it is clear
that its agreement with the experimental data is only qualitative. This can be attributed to
the perturbative nature of the model, which is only valid for small deviations from a sphere.
This limitation is somewhat conflicting with the experimental requirements, where significant
deviations from a sphere are clearly preferred for giving a more accurate readout.

The frequency-dependent prolate-to-oblate transition does not reflect a change of sign in
the forces of the electric field—both in the high- and the low-frequency limit, the forces induced
by the electric field pull the vesicle apart at poles and compress it around the equator, thus
favouring a prolate deformation. A lower energy for an oblate shape at high frequencies stems
from the shear term, fθ δrθ . In the high-frequency limit, fθ is zero for the isotropic case, and it
increases in magnitude with increasing anisotropy �ε.

3.2. High-frequency limit

High-frequency behaviour depends only on the dielectric permittivities of the membrane and
the aqueous solution, and is completely determined by coefficient ξ∞, as can be seen from (25):
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Figure 4. The boundary between the prolate and the oblate shape in the high-frequency limit
as a function of the ratio between the permittivity of the membrane (ε‖) and the permittivity of
the aqueous solution (εw). Deformation is oblate in the area above the curve and prolate in the
area below the curve. For ε‖ � εw, the dependence can be approximated with a straight line
�ε/εw = 2ε‖/εw. The curve corresponds to a vesicle radius of 10 μm, yielding γ = 0.9996.

if ξ∞ > 0, the deformation is prolate, and vice versa. The sign of the exact expression for the
coefficient ξ∞ (without employing an expansion in (1 − γ )) depends on two parameters; here,
they were chosen to be ε‖/εw and �ε/εw. It is worth noting that while the expression ξ∞
depends on γ as well, varying γ cannot change its sign. Furthermore, for all values of vesicle
radius which are of experimental interest, γ ≈ 1 holds, so γ does not significantly affect
the vesicle behaviour in our model; therefore we did not put much emphasis on it. Values of
ε‖/εw and �ε/εw for which ξ∞ = 0 holds can only be computed numerically. In figure 4, the
transition boundary between prolate and oblate shape in the high-frequency limit on the (ε‖/εw,
�ε/εw) plane is plotted.

An insight into the high-frequency behaviour can also be obtained from the expanded
expression (26). If in addition to the expansion in (1 − γ ) an expansion in ε‖/εw is employed
(it is estimated ε‖/εw ∼ 1/40), one obtains the following expression for the requirement for an
oblate deformation in the high-frequency limit:

�ε � 2ε‖. (31)

It can also be seen that in the isotropic case (�ε = 0), coefficient ξ∞ attains the form (an
expansion up to the first order in (1 − γ ) is used)

ξ∞ = 4(εw − ε‖)2

9ε‖εw
(1 − γ ), (32)

which is always positive. Thus the deformation of a vesicle with isotropic membrane
permittivity is always prolate in the high-frequency limit, which is consistent with the findings
of Winterhalter and Helfrich [8].

3.3. Low-frequency limit

The condition for prolate deformation in the low-frequency limit is obtained from limω→0 s2,
yielding the criterion ξ∞ + ξ1 + ξ2 = 0 for the threshold between prolate and oblate shapes.
Unlike the condition for the high-frequency limit, it depends on the dielectric permittivities as
well as the conductivities of the membrane and the aqueous medium. The sign of the exact
expression ξ∞ + ξ1 + ξ2 depends on three parameters; here, they have been chosen to be ε‖/εw,
�ε/εw, and σm/σw. The comments on the dependence of the expression on γ in the high-
frequency limit apply here as well. Its zero can only be computed numerically. In figure 5, the

10



J. Phys.: Condens. Matter 19 (2007) 136220 P Peterlin et al

. . . .

Figure 5. The boundary between the prolate and the oblate shape in the low-frequency limit as a
function of the ratio between permittivity of the membrane ε‖ and permittivity of water εw on the
one hand and the ratio of membrane conductivity σm and the conductivity of the aqueous medium
σw on the other hand. Deformation is prolate in the area above the curve valid for a particular value
of dielectric anisotropy and oblate in the area below it. The delineation lines correspond to different
values of dielectric anisotropy (from bottom to top): �ε = 0, 0.0144, 0.015 92, 0.016, 0.018, 0.1,
3, and 30 ε0. The curves are calculated for γ = 0.9996.

threshold between prolate and oblate shape in the low-frequency limit on the (ε‖/εw, σm/σw)
plane is plotted for several different values of �ε. The curves are plotted for γ = 0.9996,
which corresponds to a vesicle radius of 10 μm.

It is worth noting that for small values of anisotropy (�ε ≈ 0), the curves intersect the
abscissa. For �ε = 0, the intersection point is approximately 1/2−(1−γ )/3, meaning that for
ratios ε‖/εw lower than this value (this corresponds to all experimentally achievable cases) the
deformation of a vesicle with a membrane of negligible conductivity in the low-frequency limit
is prolate, while for the cases ε‖/εw > 1/2 − (1 − γ )/3, the deformation in the low-frequency
limit for the same vesicle is oblate. Increasing dielectric anisotropy lowers the threshold value,
and at �ε/εw ≈ 0.0002, the deformation of a vesicle with a non-conductive membrane is
always oblate in the low-frequency limit. This is consistent with the findings of Winterhalter
and Helfrich [8], who have predicted prolate deformation in the low-frequency limit for a
vesicle with no dielectric anisotropy and very small membrane conductivity σm/σw = 10−10.

Again, additional insight can be obtained when one employs expansions in (1 − γ ) and
ε‖/εw, yielding the following requirement for prolate deformation in the low-frequency limit:

σm >
σw

2

(
ε⊥ − ε‖

εw
− 2

ε‖ε⊥
ε2

w

)

. (33)

For ε⊥ = 3ε‖, which also fulfils the requirement (31) obtained for oblate deformation in the
high-frequency limit, (33) simplifies to

σm � ε‖
εw

σw. (34)

In (34), it has been taken into account that ε‖, ε⊥ � εw. Prolate deformation in the low-
frequency limit for a vesicle with non-zero membrane anisotropy is only possible when the
ratio of membrane conductivity to the conductivity of the aqueous solution exceeds the ratio of
permittivities of the membrane and the aqueous solution.

Another special case is the isotropic case (ε‖ = ε⊥ � εw). Here, the expression on
the right-hand side (33) is negative, and so the inequality is always fulfilled, meaning that the
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Figure 6. The dependence of the transition frequency between the prolate and the oblate shape
on the value of the ratio between membrane conductivity and the conductivity of the aqueous
medium (σm/σw), plotted for three different values of dielectric anisotropy (�ε = 4, 5, 6 ε0).
The dependence is calculated for ε‖ = 2ε0, γ = 0.9996. On the left axis, the scale is plotted in
terms of dimensionless frequency ωt/(σw/εw); on the right axis, the scale is plotted in terms of
circular frequency ωt for σw = 10−4 �−1 m−1 and εw = 80ε0.

deformation of a vesicle with no anisotropy in dielectric permittivity is always prolate in the
low-frequency limit.

3.4. Transition frequency

It is also of interest to plot the transition frequency between the prolate and the oblate shape as
a function of membrane conductivity. This corresponds to finding the zeros of the following
equation for different values of parameters:

ξ∞ + ξ1

1 + ω2τ 2
1

+ ξ2

1 + ω2τ 2
2

= 0. (35)

Parameter space can be reduced by using a dimensionless frequency, as defined above. One
can calculate the threshold dimensionless frequency numerically. Its dependence on the ratio
between membrane conductivity and the conductivity of the aqueous medium (σm/σw) for
different values of dielectric anisotropy is plotted in figure 6. It can be seen that for values
of σm/σw smaller than a certain threshold value—approximately given by (34)—one does not
obtain a prolate-to-oblate transition at all.

4. Discussion

The treatment presented in this paper largely follows the outline by Winterhalter and
Helfrich [8]. It is important to note, however, that substituting isotropic values for the
coefficients ξ∞, ξ1, ξ2, τ1 and τ2 into expression (25) does not lead to the same result as
equation (21) in their article. The expansions in factors β and γ used by Winterhalter and
Helfrich show non-analytical behaviour, where consecutive expansions in γ and β yield a result
different from the one obtained by consecutive expansions conducted in the opposite order, i.e.,
an expansion in β , followed by an expansion in γ . Using Winterhalter and Helfrich’s values
of material constants, one can see that β > γ holds in the high-frequency limit, while in the
low-frequency limit β < γ holds. Due to this, the frequency dependence of the simplified
expression they obtained by series expansion differs qualitatively from the exact expression
from which the simplified expression was derived—while the deformation described by the
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exact expression decreases with the increasing frequency, the simplified expression increases.
In this paper, we avoided using series expansion in β altogether, expressing it explicitly with
the frequency ω and material constants independent of frequency. The expression (25) may
provide a better approximation to the exact expression than the one used by Winterhalter and
Helfrich, as it retains the frequency dependence of the exact expression, while the expansion
they used employs an expansion in β and is thus actually limited to the low-frequency range
only.

In the previous section, we have developed criteria within the framework of our model,
under which the vesicle shape is prolate in the low-frequency limit and oblate in the high-
frequency limit. The criteria we obtained, however, opened a couple of questions about their
physical relevance: the tangential component of permittivity is predicted to exceed its normal
component threefold, and the membrane conductivity is predicted to be higher than the earlier
estimates [8].

(i) Membrane permittivity. Within the framework of the presented model, a criterion for
an oblate shape in the high-frequency limit was obtained, requiring that the tangential
component of the dielectric permittivity tensor of the phospholipid membrane exceeds
its radial component by approximately threefold: ε⊥ � 3ε‖. This is in qualitative
agreement with an abundance of experimental evidence claiming that the zwitterionic
phosphatidylcholine headgroup is oriented almost parallel to the surface of a hydrated
bilayer and its movement is essentially confined to a plane normal to the membrane,
employing techniques such as x-ray diffraction, neutron diffraction, 2H nuclear magnetic
resonance (NMR) and 31P NMR as well as molecular simulation studies (see [24] and the
references therein).

(ii) Membrane conductivity. Another criterion was obtained for a prolate vesicle shape in
the low-frequency limit, which required that the ratio of membrane conductivity and
conductivity exceeds the ratio of membrane permittivity and the permittivity of the aqueous
medium. In practice, this means a relatively high value for membrane conductivity: σm ∼
10−5 S m−1. This exceeds not only the value for a thin layer of oil, σm ∼ 10−14 S m−1 [8],
but also some other estimates for membrane conductivity (σm ∼ 10−7 S m−1) [11]. The
high value of conductivity could be attributed to the impurities in the lipid and the transient
submicroscopic pores in the membrane (step 1 in the accepted five-step description of
electropermeabilization, [25]). A simple model treating the intact membrane and the
pores as resistors connected in parallel shows that the total area of pores must account
for approximately 1/1000 of the total membrane area, which corresponds to 1000 pores
with an area of 100 Å

2
per 1 μm2 of membrane area. This significantly—106–108×—

exceeds the density of spontaneous pore formation in the membrane [26]. This latter value
increases, however, with an the applied electric field [27], even though the electric field
strength in our setup is approximately 70–300× lower than its threshold value necessary
for the pore expansion into micrometre-sized ‘macropores’ [28]. An initial membrane
tension present in a vesicle with a relative volume very close to 1 (the estimate for the
vesicle shown in figure 1 is v = 0.9993 ± 0.0007) also works in the same direction.
Altogether, a high value of membrane conductivity predicted by the presented model
remains a poorly understood effect, and awaits further investigations before a definitive
conclusion can be made.

4.1. Geometry considerations

It has been our intention to build the simplest possible model which would explain the observed
frequency-dependent prolate-to-oblate shape transition for small deformations and yield a clear
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physical picture of the phenomenon. The validity of the model decreases once we depart from
small deformation. A possible extension of the model lies in a more appropriate description of
the vesicle geometry, i.e. spheroidal instead of spherical. An effort in the suggested direction
might benefit from the treatment of a spheroid vesicle with a permeable membrane [29],
as well as from the calculations of transmembrane voltage for the case of zero membrane
conductance [30, 31] and the solution for the electric potential for the general anisotropic
case [13].

5. Conclusions

The proposed model provides a theoretical explanation for the observed prolate-to-oblate
transition of phospholipid vesicle shape, when the frequency of the applied AC electric field
increases, in the case when the electrical properties of the aqueous solution inside the vesicle do
not differ from the properties of the aqueous solution outside the vesicle. Vesicle deformation
at varying frequency was calculated numerically. Using an expansion into Taylor series we
also derived a simplified expression for the deformation. The expression retains the frequency
dependence of the exact expression and may provide a better substitute for the expression
that Winterhalter and Helfrich obtained by series expansion, which was found to be valid
only in the limit of low frequencies. The model with anisotropic membrane permittivity
imposes two constraints on the values of material constants: the tangential component of the
dielectric permittivity tensor of the phospholipid membrane must exceed its radial component
by approximately a factor of 3; and the membrane conductivity has to be relatively high,
approximately one tenth of the conductivity of the external aqueous medium. Both constraints
seem to be justified to a certain degree by the claims found in the literature.
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